Selected Publications
- Kim, J., Liu, Q. & Shlizerman, E. (2024). ElectroPhysiomeGAN: Generation of Biophysical Neuron Model Parameters from Recorded Electrophysiological Response.
- Nicoletti, M., Chiodo, L., Liu, Q., Folli, V., Ruocco, G. & Flilippi, S. (2024). Bioplysical modeling of the whole-cell dynamics of C. elegans motor and interneurons families.
- Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Vierock, J., et al. (2023). All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14, 1939. 10.1038/s41467-023-37622-6.
- Jiang, J.*, Su, Y.*, Zhang, R., Li, H., Tao, L., and Liu, Q. (2022). C. elegans enteric motor neurons fire synchronized action potentials underlying the defecation motor program. Nat Commun 13, 2783. 10.1038/s41467-022-30452-y.
- Naudin, L., Jimenez Laredo, J.L., Liu, Q., and Corson, N. (2022). Systematic generation of biophysically detailed models with generalization capability for non-spiking neurons. PLoS One 17, e0268380. 10.1371/journal.pone.0268380.
- Dobosiewicz M., Liu, Q., and Bargmann, C.I. (2019). Reliability of an interneuron response depends on an integrated sensory state. ELife 8, 50566.
- López-Cruz A., Sordillo A., Pokala N., Liu, Q., McGrath P.T., and Bargmann C.I. (2019). Parallel multimodal circuits control an innate foraging behavior. Neuron 102(2), 107-419 e8.
- Liu, Q., Kidd P.B., Dobosiewicz M., and Bargmann, C.I. (2018). C. elegans AWA olfactory neurons fire calcium-mediated all-or-none action potentials. Cell 175, 57-70 e17.
- Larsch, J., Flavell, S.W., Liu, Q., Gordus, A., Albrecht, D.R., and Bargmann, C.I. (2015). A circuit for gradient climbing in C. elegans chemotaxis. Cell Rep 12(11), 1748-60.
- Liu, Q., Frerck M.J., Holman H.A., Jorgensen, E.M., and Rabbitt R. (2014). Exciting cell membrane with a blustering heat shock. Biophys J 106(8) 1570-7.
- Pokala, N., Liu, Q., Gordus, A., and Bargmann, C.I. (2014) Inducible and titratable silencing of C. elegansneurons in vivo with histamine-gated chloride channels. Proc Natl Acad Sci U S A. 111(7):2770-5.
- Ailion, M., Hannemann, M., Dalton, S., Pappas, A., Watanabe, S., Hegermann, J., Liu, Q., Han, H.F., Gu, M., Goulding, M.Q., Sasidharan, N., Schuske, K., Hullett, P., Eimer, S., and Jorgensen, E.M. (2014). Two Rab2 interactors regulate dense-core vesicle maturation. Neuron 82(1), 167-80.
- Watanabe, S., Liu, Q., Davis M.W., Hollopeter, G., Thomas, N., Jorgensen, N.B., and Jorgensen, E.M. (2013). Ultrafast endocytosis at Caenorhabditis elegans neuromuscular junction. Elife 2, e00723.
- Gu, M., Liu, Q., Watanabe, S., Sun, L., Hollopeter, G., Grant, B., and Jorgensen, E.M. (2013) AP2 hemicomplexes contribute independently to synaptic vesicle endocytosis. Elife 2, e00190.
- Hobson, R.J.*, Liu, Q.* (Co-first authorship), Watanabe, S., and Jorgensen, E.M. (2011). Complexin maintains vesicles in the primed state in C. elegans. Curr biol 21, 106-113.
- Liu, Q., and Jorgensen, E.M. (2011). Muscle memory (Commentary). J Physiol 589, 775-776 Comment on: Liu, P., Ge, Q., Chen, B., Salkoff, L., Kotlikoff, M.I., and Wang, Z.W. (2011). J Physiol 589, 101-117.
- Liu, Q., Hollopeter, G., and Jorgensen, E.M. (2009). Graded synaptic transmission at the Caenorhabditis elegans neuromuscular junction. Proc Natl Acad Sci U S A 106, 10823-10828.
- Gu, M., Schuske, K., Watanabe, S., Liu, Q., Baum, P., Garriga, G., and Jorgensen, E.M. (2008). Mu2 adaptin facilitates but is not essential for synaptic vesicle recycling in Caenorhabditis elegans.J Cell Biol 183, 881-892.
- Chen, B.*, Liu, Q.* (Co-first authorship), Ge, Q.*, Xie, J., and Wang, Z.W. (2007). UNC-1 regulates gap junctions important to locomotion in C. elegans. Curr Biol 17, 1334-1339. Commentary: Norman, K.R., and Maricq, A.V. (2007). Innexin function: minding the gap junction. Curr Biol 17, R812-814.
- Liu, Q., Chen, B., Hall, D.H., and Wang, Z.W. (2007). A quantum of neurotransmitter causes minis in multiple postsynaptic cells at the Caenorhabditis elegans neuromuscular junction. Dev Neurobiol 67, 123-128.
- Liu, Q.*, Chen, B.*, Ge, Q.*, and Wang, Z.W. (2007). Presynaptic Ca2+/calmodulin- dependent protein kinase II modulates neurotransmitter release by activating BK channels at Caenorhabditis elegansneuromuscular junction. J Neurosci 27, 10404-10413.
- Liu, Q.*, Chen, B.*, Gaier, E., Joshi, J., and Wang, Z.W. (2006). Low conductance gap junctions mediate specific electrical coupling in body-wall muscle cells of Caenorhabditis elegans. J Biol Chem 281, 7881-7889.
- Mahoney, T.R., Liu, Q., Itoh, T., Luo, S., Hadwiger, G., Vincent, R., Wang, Z.W., Fukuda, M., and Nonet, M.L. (2006). Regulation of synaptic transmission by RAB-3 and RAB-27 in Caenorhabditis elegans. Mol Biol Cell 17, 2617-2625.
- Liu, Q., Chen, B., Yankova, M., Morest, D.K., Maryon, E., Hand, A.R., Nonet, M.L., and Wang, Z.W. (2005). Presynaptic ryanodine receptors are required for normal quantal size at the Caenorhabditis elegans neuromuscular junction. J Neurosci 25, 6745-6754.
- Deken, S.L., Vincent, R., Hadwiger, G., Liu, Q., Wang, Z.W., and Nonet, M.L. (2005). Redundant localization mechanisms of RIM and ELKS in Caenorhabditis elegans. J Neurosci 25, 5975-5983.
- Lei, G., Xue, S., Chery, N., Liu, Q., Xu, J., Kwan, C.L., Fu, Y.P., Lu, Y.M., Liu, M., Harder, K.W., et al. (2002). Gain control of N-methyl-D-aspartate receptor activity by receptor-like protein tyrosine phosphatase alpha. EMBO J 21, 2977-2989